Jump to content
Astronomia - Espacio Profundo
  • Registrate

    Registrate en Espacio Profundo y participa de la comunidad más grande de Astronomía Amateur de habla hispana!

Buscar en la comunidad

Mostrando resultados para las etiquetas 'relatividad'.

  • Buscar por etiquetas

    Escribe las etiquetas separadas por comas.
  • Buscar por autor

Tipo de contenido


Foros

  • Star Parties, Salidas y juntadas
    • Invitaciones y propuestas
  • Astronomia
    • Que telescopio me compro - Preguntas y respuestas
    • Primeros Pasos
    • Novedades y Discusión general sobre Astronomía
    • Astronomía Observacional Propuestas y Reportes
    • Estrellas Variables y Dobles, novas y supernovas
    • Espectroscopía, astrometría y fotometría
    • Astronautica
    • Ciencias de la Astronomía
    • Reseña de Libros y Documentales sobre Astronomía
    • Dibujo Astronómico
  • Astrofotografia
    • Novedades del Mercado Astrofotografico
    • Astrofotografía general
    • Espacio Profundo, Galaxias, Nebulosas y Cúmulos
    • Sistema Solar
    • Campo Amplio
    • Astrofotos de principiantes e intermedios
    • Fenómenos Atmosféricos
    • Software
    • APOD
    • Fotografia con celulares y tablets
  • Equipamiento
    • Discusión General sobre equipamiento
    • Tubos ópticos y óptica general
    • Oculares y Filtros
    • Monturas
    • Telescopios con Goto y autoguiado
    • Binoculares
    • Taller y Bricolage
  • Espacio Profundo
    • Club Social Espacio Profundo
    • Sugerencias sobre el sitio
    • Off-Topic
  • Avisos Clasificados
    • Telescopios, tubos y monturas
    • Accesorios, oculares y filtros
    • Binoculares, trípodes y soportes
    • Cámaras de fotos, CCD's y webcams
    • Compro!
  • En cuarentena
    • Para despejarse, 100% off-topic
    • Catarsis
  • Digiscoping
    • Fotografia y observación de aves (bird watching)
    • Fotografía de naturaleza
  • Ocultaciones
    • Predicciones
    • Resultados
    • Ayuda y tutoriales
  • Cursos Espacio Profundo
    • Astronomía General
    • Astrofotografía I
    • Astronomía Observacional

Efemérides

  • Afelios y Perihelios
  • Conjunciones Planetarias
  • Conjunciones Lunares
  • Eclipses Lunares
  • Eclipses Solares
  • Elongaciones Planetarias
  • Fases Lunares
  • LLuvia de Estrellas
  • Nodos, apogeos y perigeos Lunares
  • Oposiciones Planetarias
  • Equinoccios y Solsticios

Categories

  • Guías para iniciados
  • Primeros Pasos
  • Astronomia
    • Observacional
    • Sistema Solar
    • Física y cosmología
    • Las 88 Constelaciones
    • Historia
    • Biografías
    • Software
    • Espacio Profundo
    • Espectroscopía
  • Astrofotografía
    • Puesta en estación
    • Adquisición
    • Post-procesado
    • Tutoriales
    • Imagen de la semana
  • Equipamiento
    • Test y pruebas
  • Mitos y Verdades
  • Ocultaciones
    • Predicciones

Categories

  • Guías sobre Astrofotografía
    • Puesta en Estación
    • Colimación de telescopios
    • Método de deriva
    • Metodos para Enfocar
    • Adquisición
    • Exposición Optima
    • Adquisición con MaximDL
    • Post-procesado
    • PixInsight
    • Software
    • Sobre cámaras - Introducción, preconceptos, sensores y resolución
    • Conociendo nuestra cámara
    • Bibliografía

Categories

  • Curso de Introducción a la Astronomía Amateur

Categories

  • Cómo elegir una cámara para astrofotografía
    • Introducción, preconceptos, sensores y resolución
    • Conociendo nuestra cámara
    • Bibliografía

Categories

  • Lista de Star Party Abril 2018

Categories

  • Cursos de Astronomía Espacio Profundo

Categories

  • Enero
  • Febrero
  • Marzo
  • Abril
  • Mayo
  • Junio
  • Julio
  • Agosto
  • Septiembre
  • Octubre
  • Noviembre
  • Diciembre

Categories

  • Astronomía Observacional
    • Listados de objetos para observación
    • Calidad de cielo
    • Técnicas de observación
    • Equipamiento
    • Libros
    • Software

Categories

  • Todo sobre Lluvias de Estrellas
    • Calendario de Lluvias de estrellas
    • Guías de observación de lluvia de estrellas

Categories

  • Calendario de Eclipses Solares y Lunares
  • Todo Sobre Eclipses

Encontrar resultados en...

Encontrar resultados que contengan...


Fecha creación

  • Inicio

    Fin


Última actualización

  • Inicio

    Fin


Filtrar por número de...

Encontrado 5 resultados

  1. Según informa el Centre National d'Études Spatiales (CNES), al final de su misión, el satélite francés Microscope desplegará para su última maniobra un nuevo sistema de desorbitación. El primero de su tipo para evitar escombros a largo plazo en órbita. Dos años y medio después de su lanzamiento en órbita baja polar en abril de 2016, el satélite Microscope está viviendo sus últimas horas. Diseñado para probar el principio de equivalencia con una precisión sin precedentes gracias a dos masas en caída libre, este satélite de CNES completó con éxito la recopilación de datos científicos en febrero de 2018. Desde un punto de vista científico, los equipos dedicados tienen hasta finales de 2019 para publicar sus resultados en base a todos los datos adquiridos. Ya sea que confirmen el principio de equivalencia o detecten una violación de este mismo principio, los resultados finales harán avanzar a los científicos en esta búsqueda. Pero el satélite ha llegado al final de su vida útil. Está en muy buenas condiciones, pero ya no tiene gas frío para sus micro-hélices, que se utilizan para compensar la resistencia y mantener las masas en caída libre controlada. Ya no es posible adquirir nuevas medidas científicas, por lo que es hora de lidiar con la pasivación. El satélite Microscope no tiene propulsores químicos capaces de proporcionar suficiente energía para desorbitarlo. Después de la secuencia de pasivación, que consiste en hacerlo lo más inactivo posible (no debe quedar ninguna fuente de energía neumática, química o eléctrica), Microscope será considerado como un residuo en órbita, alrededor de la Tierra a 710 km de altitud. Sin embargo, se trata de un pequeño satélite de sólo 330 kg, con poca superficie y, por lo tanto, poca interacción con las pocas partículas atmosféricas capaces de ralentizarlo a esta altitud: se necesitarían 73 años para que finalmente se quemara en la atmósfera de la Tierra. Por eso, MICROSCOPE está equipado con IDEAS (Innovative DEorbiting Aerobrake System), que consiste en dos mástiles inflables de 4,5 m, cada uno de ellos con un "ala" flexible. La superficie de Microscope aumentará en 9 m², lo que generará mucha más fricción con las partículas atmosféricas y el frenado cambiará la órbita paulatinamente con el tiempo. En general, gracias a este sistema, se espera que el satélite se queme en la atmósfera después de unos 27 años. La pasivación se inició ayer 15 de octubre y la secuencia finalizará hoy 16 de octubre. El sistema IDEAS se monitoreará desde el suelo con la ayuda de un potente radar terrestre, el primer paso será determinar si los dos mástiles se han extendido correctamente: plegado, el sistema mide solo 25 cm de largo, y sus alas están plegadas como un origami. La respuesta definitiva la tenderemos un mes después, cuando detectaremos si el satélite en realidad se está frenando por el sistema IDEAS. Quien desee conocer los objetivos científicos y los primeros resultados publicados de la Misión MICROSCOPE, puede consultar MICROSCOPE: El satélite para comprobar con gran precisión el Principio de Equivalencia Saludos.
  2. Miguel L

    Interesante video ift.

    Encontre este video de una conferencia del ift, actualizado y recomendable. Las soluciones imaginarias o complejas de las ecuaciones de campo de la RG. ¿no serán la prueba de existencia de otras dimensiones? Video interesante del ift. Sobre AN.
  3. Hola comunidad, tal vez a mas de uno se le ocurrió pero... hay alguna técnica al alcance del aficionado para medir la curvatura del espacio durante el total? Cómo hizo Eddington?? Corría el año 1919 Saludos! Diego
  4. Hola compañeros, os recuerdo a todos que el próximo miércoles, el día 29 de Mayo se cumplirán 100 años del histórico eclipse de Sol del 29/05/1919 en el que la iniciativa liderada por el astrónomo británico Arthur Eddington midió por primera vez la desviación de la luz de estrellas lejanas que pasaba cerca del Sol, y confirmó el valor de desviación que había calculado Einstein en la Relatividad General. A la izquierda la portada del New York Times del 10 de Noviembre de 1919 anunciando que los resultados del análisis de las fotografías del eclipse constituían "el triunfo de Einstein": "Luces doblándose en cielo. Hombres de Ciencia más o menos excitados por los resultados de las observaciones del eclipse. La teoría de Einstein triunfa". A la derecha el dibujo que apareció en Illustrated London News el 22 de noviembre de 1919, que ilustra el resultado de Eddington de la observación del eclipse. Aquí podéis ver el histórico documento científico, que se publicó en "Philosophical Transactions of the Royal Society A. Mathematical, Physical and Engineering Sciences" el 1 de Enero de 2020, titulado A Determination of the Deflection of Light by the Sun’s Gravitational Field, from Observations Made at the Total Eclipse of May 29, 1919 (Dyson, Eddington, Davidson) En el diario La Vanguardia: El eclipse que le dio a Einstein la razón Saludos.
  5. Biografía de Albert Einstein (1879-1955) Científico estadounidense de origen alemán. Está considerado generalmente como el físico más importante de nuestro siglo, y por muchos físicos como el mayor científico de todos los que han existido. Nació de padres judíos en la ciudad alemana de Ulm el 14 de marzo de 1879. A la edad de 17 años hizo su ingreso en el Politécnico de Zürich, donde estudió durante tres años hasta obtener el diploma de enseñante; en 1898 ocuparía un modesto cargo en la oficina de patentes de Berna, la capital suiza.En 1905 publicó en Annalen der Physik tres importantes comunicaciones, entre las cuales estaba Zur Elektrodinamik bewegter Körper (Sobre la electrodinámica de los cuerpos en movimiento), donde se formulaban con toda claridad los principios de la llamada Teoría especial de la relatividad. Los elementos que están en la base de esta teoría son sencillos y se asientan en la experiencia. Según el primero, en un tren que se moviera suavemente con una velocidad constante a lo largo de una vía recta, todas las leyes físicas serían iguales que las de una sala inmóvil; según el segundo, la velocidad de la luz, tanto la medida en el tren en marcha como en la habitación, sería siempre la misma, es decir, de 300000 km/s (con tal que se propagara por el aire), independientemente del estado de movimiento y del manantial luminoso. A partir de esos dos principios dedujo Einstein algunos resultados que en 1905 parecían muy extraños, pero que a cualquier físico de nuestros días le resultan familiares y convincentes. El de mayor importancia es el que se refiere a la ruptura con la física newtoniana, cuya validez queda restringida por la teoría especial de la relatividad a velocidades mucho más pequeñas que las de la luz. En la física newtoniana los acontecimientos ocurren en un espacio y un tiempo absolutos, lo mismo en una habitación que en un tren en marcha. Según la teoría especial no pueden separarse el tiempo y el espacio; aquél fluye en forma diferente en habitáculos y en trenes en marcha, y esta diferencia podría ser detectable si la velocidad del tren se acercara a la de la luz. También demuestra esta Teoría especial que la velocidad de la luz es la mayor que pueden alcanzar los cuerpos materiales. De hecho, esta predicción fue confirmada experimentalmente, no con el movimiento de trenes, sino con el de partículas que se movían a velocidades cercanas a las de la luz. Otro resultado muy importante de esa teoría fue la deducción de la relación existente entre energía y masa en la ahora famosa fórmula: E = mc², en la que E significa la energía, m, la masa, y c, la velocidad de la luz. La importancia de esta fórmula quedaría demostrada 40 años más tarde con las explosiones atómicas. La segunda comunicación publicada en el volumen que contenía la teoría especial de la relatividad explica la teoría del efecto fotoeléctrico, según la cual la luz se convierte en una especie de chubasco de proyectiles, la energía de los cuales es proporcional a la frecuencia de la onda luminosa. Finalmente, la tercera comunicación contenía una teoría matemática sobre el movimiento browniano, es decir, el de pequeñas partículas suspendidas en un fluido y moviéndose de un modo aparentemente irregular por bajo del influjo de las partículas del fluido más pequeñas aún. Tuvieron que transcurrir tres años para que la teoría especial fuera reconocida en el mundo de los físicos. En 1911 pasó a ser Einstein profesor de la Universidad alemana de Praga (entonces perteneciente a Austria), y allí comenzó su trabajo sobre la Teoría general de la relatividad. Todavía le exigió otros cinco años de intenso trabajo hasta que esta teoría fuera finalmente formulada en 1916. En el intervalo aceptó Einstein una invitación del profesor Max Planck para ir a Alemania, y en 1913 se convertía en miembro de la Academia Prusiana de Ciencias de Berlín. La Teoría general de la relatividad era la primera desde los tiempos de Newton que se enfrentaba al problema de la gravitación. En un vacío absoluto, sin materia, la teoría especial era válida; pero, según la teoría general, las masas y sus velocidades conforman nuestro espacio-tiempo, que no posee la estructura sencilla que se le atribuía en la teoría especial. Nuestro espacio-tiempo deja de ser euclidiano. Desde algún tiempo los matemáticos sabían que la geometría euclidiana es sólo un caso especial de las geometrías más generales, como las rienmannianas. Einstein dio por sentado que nuestro mundo sería euclidiano sólo si estuviera vacío de materia, y rienmanniano si estaba lleno de planetas, estrellas y nebulosas. En este caso posee un campo métrico del mismo modo que las partículas cargadas producen un campo electromagnético. A primera vista la teoría general de la relatividad parece especulativa y deducida fundamentalmente del hecho conocido de que todos los cuerpos caen en la Tierra con la misma aceleración, sea cual sea su masa. Pero de esta teoría se sacaron nuevas conclusiones que pasaron con éxito la prueba experimental. La primera y quizá la más importante de las conclusiones para ser verificada fue la de las diferencias predictivas entre las nuevas teorías gravitatorias y la de Newton. La más espectacular de estas diferencias se refiere a que los rayos luminosos emitidos por una estrella distante en dirección de la Tierra se curvan al pasar bordeando el Sol. Este fenómeno puede comprobarse al fotografiar dos veces la misma región celeste: la primera vez de noche y la segunda cerca del Sol eclipsado. Estas dos fotografías deberán ser ligeramente diferentes precisamente a causa de esa ligera curvatura de los rayos luminosos. En 1919 los ingleses enviaron dos expediciones, una de ellas a América del Sur, la otra a África, para fotografiar un sector del cielo durante un eclipse solar, y los resultados confirmaron la predicción de la teoría general de la relatividad. Este hecho causó un gran impacto en las concepciones de muchos en todo el mundo e hizo surgir la gran fama de la teoría general y la de su creador. En 1921 Einstein era galardonado con el premio Nobel de Física por su descubrimiento de la ley de la fotoelectricidad. Cuando Hitler ascendió al poder en Alemania, Einstein emigró a Estados Unidos, donde a partir de 1933 fue profesor en el Instituto para Investigaciones Avanzadas de Princeton (N.J.). El problema en el que trabajó en sus últimos años fue el de la teoría del campo unificado que, a través de una serie de ecuaciones, había de abarcar tanto los fenómenos gravitatorios como los electromagnéticos. En 1953 (poco antes de su muerte, que le sorprendió en Princeton), salió a la luz la cuarta edición de su famosa obra The Meaning of Relativity (El significado de la relatividad), aparecida por primera vez en Calcutta (1920). En ella Einstein publicó en forma detallada su antes citada teoría del campo unificado a la que había llegado, hasta cierto punto, en 1949. Entre otros trabajos científicos suyos pueden citarse: Relativity; the Special and General Theory (Nueva York, 1920); Investigations on Theory of Brownian Movement (1926). Mein Weltbild (1934), My Philosophy (1934) y Out of my Later Years (1950). Extraído de Biografias y Vidas
×
×
  • Crear nuevo...

Información importante

Términos y condiciones de uso de Espacio Profundo