Jump to content
Astronomia - Espacio Profundo
  • Registrarme
  • Eclipse Lunar Total del 20 y 21 de Enero de 2019

     

    Inicio Eclipse
    Inicio Eclipse Total
    Máximo
    Fin Eclipse Total
    Fin del Eclipse
    11:36 PM
    0:33 AM
    2:12 AM
    3:50 AM
    4:48 AM
     
    Inicio
    Máximo
    Fin
    11:36
    2:12
    04:48
     
    Logo Duoptic magento.png
Conéctate para seguir esto  
AlbertR

Descubren que el asteroide 2017 YE5 es doble

Recommended Posts

AlbertR

 

La colaboración de 3 de los radiotelescopios más grandes del mundo Goldstone Solar System Radar, Arecibo Observatory y Green Bank Observatory ha permitido descubrir que el asteroide 2017 YE5 descubierto el 21/12/2017 es doble.

Ambos objetos tienen unos 900 m de diámetro cada uno. Es solo el cuarto objeto binario compuesto de 2 cuerpos casi iguales descubierto cuya órbita se acerca a la de la Tierra. Giran en torno al centro de masas común en unas 20-24 horas.

El máximo acercamiento a la Tierra, 6 millones de km, tuvo lugar el 21 de Junio. Imagen de la órbita:

 

Orbita_Asteroide.gif.06e02f33ec7a7f08027d3fe6356243a1.gif

 

Saludos.

 

 

 

 

 

  • Like 2

Compartir este post


Enlace al post
Compartir en otros sitios

Registra una cuenta o conéctate para comentar

Debes ser un miembro de la comunidad para dejar un comentario

Crear una cuenta

Regístrate en nuestra comunidad. ¡Es fácil!

Registrar una cuenta nueva

Iniciar Sesión

¿Ya tienes cuenta? Conéctate aquí.

Iniciar Sesión
Conéctate para seguir esto  

  • Contenido Similar

    • Nestor
      Por Nestor
      El dia 6 de Septiembre, desde mi observatorio: ANTARES, localizado en Pilar, Provincia de Buenos Aires, fotografie el Neo A108hPP. A partir del día 8 de Septiembre el Minor Planet Center lo designó como asteroide 2018RD1.
       
      Neo A108hPP - 2018RD1 es un asteroide de tipo amor con un diámetro de 40-90 metros.
      El Neo de la página de confirmación del MPC de Octubre 2018,  A108hPP, que hemos observado anoche, ha sido designado 2018 RD1. es un asteroide de tipo amor con un diámetro de 40-90 metros. 2018 td1 fue observado por primera vez en Atlas-Mlo, Mauna Loa, el 6 de septiembre. El 8 de septiembre se hizo un acercamiento cercano, a una distancia de 0.035 UA (5.2 millones de km) de la tierra. Ahora es visible en + 18 mag y se desvanece.
       
      Los datos de la captura:
       
      3 sesiones de una hora.
      Un total de 150 Lights.
      Tiempo de exposición 60 segundos
      Bin 3
      Sin Filtro
      CCD QHY 9 refrigerada a -20C°
      Camara Guia: QHY 5L Mono
      Telescopio SW 200 f/5
      Maxim DL6
      Procesado con Astrometrica.
       
       
       
       
       
       
       


    • AlbertR
      Por AlbertR
      La sonda OSIRIS-REx de la NASA que fue lanzada el 08/09/2016 tiene como objetivo principal alcanzar el asteroide Bennu , recoger muestras de su superficie y traerlas de regreso a la Tierra para analizarlas.
      No hay demasiadas fotos del sistema Tierra-Luna. El pasado 17 de Enero OSIRIS-REx desde una distancia de 63.6 millones de km tomó esta bonita instantánea de Tierra-Luna en el centro de la cabeza de Cetus que me gusta compartir.
       

       
      Todos identificaréis arriba a la derecha Aries, y a la izquierda Las Pléyades. Fuente: NASA’s OSIRIS-REx Captures New Earth-Moon Image
       

       
      Información adicional sobre la Misión OSIRIS-REx en "Sonda OSIRIS-REx para recoger muestras en el asteroide Bennu"
      Saludos.
       
    • Nestor
      Por Nestor
      EL Jueves 5 de Julio me entretuve capturando imágenes del conocido asteroide Vesta.
       
      Los datos de la captura:
      Camara QHY9 sin filtro
      Montura HEQ6 Pro
      Programa Maxim DL6
      50 lights de 30 segundos en Bin3
      Lugar Observatorio Antares-Pilar (MP Code X39)
       
      Coordenadas: AR 17 36 54.8      Dec -20 57 02
      V=5.7
      Skymotion: 0.54 "/min
      Alt:  +50
       
      Datos astronómicos
      Vesta , designación de planeta menor 4 Vesta , es uno de los objetos más grandes en el cinturón de asteroides , con un diámetro medio de 525 kilómetros (326 millas). Fue descubierto por el astrónomo alemán Heinrich Wilhelm Olbers el 29 de marzo de 1807 y lleva el nombre de Vesta , la diosa virgen del hogar y hogar de la mitología romana .
      Vesta es el segundo cuerpo más grande y segundo más grande en el cinturón de asteroides después del planeta enano Ceres  y contribuye con un estimado del 9% de la masa del cinturón de asteroides . Es un poco más grande que Pallas , aunque significativamente más masivo. Vesta es el único protoplaneta rocoso restante conocido (con un interior diferenciado ) del tipo que formaron los planetas terrestres .  Numerosos fragmentos de Vesta fueron expulsados por colisiones hace uno y dos mil millones de años que dejaron dos enormes cráteres ocupando gran parte del hemisferio sur de Vesta.  Los desechos de estos eventos han caído a la Tierra como meteoritos de howardita-eucrita-diogenita (HED) , que han sido una rica fuente de información sobre Vesta. 
      Vesta es el asteroide más brillante visible desde la Tierra. Su distancia máxima desde el Sol es ligeramente mayor que la distancia mínima de Ceres desde el Sol,  aunque su órbita se encuentra completamente dentro de la de Ceres. 
      La nave espacial Dawn de la NASA entró en órbita alrededor de Vesta el 16 de julio de 2011 para una exploración de un año y dejó la órbita el 5 de septiembre de 2012 camino a su destino final, Ceres. Los investigadores continúan examinando los datos recopilados por Dawn para obtener información adicional sobre la formación y la historia de Vesta
       



    • NicoHammer
      Por NicoHammer
      2 noches después, volví a observar Vesta y, viendo semejante movimiento respecto a la noche del 20, decidí registrarlo en dibujo nuevamente.
       
      Observado con Daza 1000x114, 25 aumentos con ocular 40 mm.
      Editado en PS. Se agregaron referencias.
      Espero les guste.
       
      Buenos cielos para todos!

    • AlbertR
      Por AlbertR
      19 de junio de 2018: España se ha convertido en el undécimo miembro de la Organización del Square Kilometre Array (SKA). Culminan así varios años de trabajo de la comunidad científica española, encaminado a participar en el desarrollo y explotación de un instrumento que protagonizará los grandes hallazgos de las próximas décadas.

      Nuestro Ministro de Ciencia, el astronauta Pedro Duque, ha asegurado que la adhesión de España a la organización SKA “es una inversión estratégica para nuestro país, ya que el Observatorio SKA será una de las infraestructuras internacionales de investigación más importantes de Europa en los próximos años”. El ministro ha explicado que la pertenencia a la organización internacional permitirá explorar la forma de «participar en la futura construcción del Observatorio SKA en las mejores condiciones, garantizando que los científicos españoles tengan acceso a las mejores infraestructuras de radioastronomía a gran escala y que nuestra industria de vanguardia esté bien posicionada para competir en los contratos de desarrollo de tecnologías y de construcción”
       
      La participación española en SKA ha estado liderada por el Instituto de Astrofísica de Andalucía (IAA). El IAA ha celebrado la noticia y ha explicado que durante muchos años España ha tenido una gran participación en SKA, tanto desde el punto de vista científico como de la industria. El SKA revolucionará nuestra forma de ver el Universo y España formará parte de este reto.
      España ha estado participando en actividades relacionadas con SKA desde sus comienzos y muchos científicos e ingenieros han participado en diferentes grupos de trabajo de ciencia e ingeniería de SKA desde 2012, fecha en que se creó la organización SKA para dirigir el proyecto durante la fase de diseño del telescopio. En la actualidad, 26 investigadores españoles forman parte de 9 de los 11 grupos de trabajo de ciencia de SKA
      Con la incorporación de España, los países que componen la organización son: Australia, Nueva Zelanda, Sudáfrica, India, China, Canadá, Italia, Holanda, Gran Bretaña, Suecia y España.
       
      ¿Pero qué es SKA?
       
      El Square Kilometre Array (SKA) es un proyecto internacional destinado a construir un radiotelescopio que en última instancia será decenas de veces más sensible y miles de veces más rápido en la observación del cielo que cualquiera de las instalaciones radioastronómicas actuales. En pocas palabras: el SKA será el radiotelescopio más grande del mundo.
       
      El SKA no es un solo telescopio, sino un conjunto de telescopios – un array – que se extenderá a lo largo de grandes distancias. El SKA se construirá en dos fases: la Fase 1 (SKA1) que se construirá en Sudáfrica y Australia. Durante la Fase 2 (SKA2) se extenderá geográficamente. En concreto, en el nodo africano se instalarán antenas a lo largo de otros países del continente.
      Será lo suficientemente potente como para detectar señales de radio muy débiles emitidas por fuentes cósmicas situadas a miles de millones de años luz de distancia, lo que permitirá vislumbrar los primeros mil millones de años del universo (hace más de trece mil millones de años) periodo en el que las primeras galaxias y las estrellas comenzaron a formarse.
       
      Las siglas SKA responden a Square Kilometre Array (array de un kilómetro cuadrado). Su nombre refleja el deseo original de construir un telescopio de un kilómetro cuadrado de área colectora a través de un conjunto de antenas distribuidas en un área geográficamente mucho más grande. Aunque el nombre original permanece, el concepto se ha ampliado. De hecho, la superficie colectora total del SKA será en última instancia mucho mayor que un kilómetro cuadrado.
      El SKA será un enorme conjunto de antenas. Constará de dos tipos diferentes de antena: antenas parabólicas y antenas dipolo. Se han desarrollado dos diseños diferentes porque cada uno resulta más adecuado para recibir señales a diferentes frecuencias: las antenas dipolo reciben frecuencias muy bajas, (similares a aquellas con las que sintonizamos emisoras FM). Los platos operan a frecuencias más altas, (parecidas a las utilizadas para transmitir las señales de los teléfonos móviles). En la segunda fase de la construcción podría añadirse un tercer tipo de antena para frecuencias intermedias.
       
      SKA1 constará de dos telescopios complementarios –formados por conjuntos de antenas- que proporcionarán una cobertura continua: un telescopio de baja frecuencia en Australia (desde 50 MHz a 350 MHz) y otro de frecuencia media en Sudáfrica (desde 350 MHz a 14 GHz).
      El SKA al completo (SKA1 + SKA2) incluirá varios cientos de platos (hasta dos mil, aunque el número exacto no está aún completamente definido) cada uno de quince metros de diámetro. La mayoría de estos platos se situarán en Sudáfrica. Una buena parte se instalará en los países socios africanos del SKA durante la Fase 2.
       
      Una vez este el SKA operativo, ya sea total o parcialmente, las señales de radio de todos los receptores serán transmitidas y procesadas en un supercomputador que las correlacionará. Esto permitirá el apuntado electrónico de todo el conjunto de antenas a cualquier región del cielo como si de una única gran antena se tratara.
      Vídeo con subtítulos en castellano:
       
       
      ¿Qué hace que el SKA sea tan potente?: La percepción más popular de un radiotelescopio suele ser la de una gran antena parabólica, es decir, con forma de plato. Pero tanto los costes como la mecánica imponen límites a cómo de grande puede ser una única antena de este tipo.
       
      Para construir radiotelescopios más grandes y potentes se recurre a una técnica llamada interferometría. La interferometría emplea un gran número de antenas más pequeñas conectadas entre sí por redes de fibra óptica y que trabajan como si formaran un solo gran telescopio virtual. Cuantas más antenas conformen el instrumento, mayor será el área de recolección eficaz y, por tanto, mayor será la sensibilidad para detectar señales de radio muy débiles procedentes de cualquier punto del cosmos.
      Si además las antenas están distribuidas a lo largo de grandes distancias, también se logrará una mejor resolución en las observaciones, proporcional a la mayor separación existente entre antenas. Esta técnica es la que hace que el SKA sea el radiotelescopio más grande y potente del mundo. En la primera fase del SKA ya será al menos cinco veces más sensible y sesenta veces más rápido que cualquier radiotelescopio actual.
       
      La Fase 1 del SKA (SKA1) supondrá una importante mejora en la capacidad actual de los mejores radiotelescopios actuales. Su construcción comenzará este 2018, y se espera que ofrezca la primera ciencia en 2020. La construcción de las dos fases del SKA requerirá más de una década y el pleno desarrollo de la Fase 2 (SKA2) implicará un mayor refinamiento de toda la tecnología puesta al servicio del SKA.
       
      Mucha más información en la página web del proyecto, que está en español: SQUARE KILOMETRE ARRAY
       
      Saludos.
×

Important Information

Términos y condiciones de uso de Espacio Profundo