Jump to content
Astronomia - Espacio Profundo
Sign in to follow this  
AlbertR

EL INNOVADOR FINAL DE MICROSCOPE, el satélite para comprobar con gran precisión el Principio de Equivalencia de la Relatividad General

Recommended Posts

AlbertR

Según informa el Centre National d'Études Spatiales (CNES), al final de su misión, el satélite francés Microscope desplegará para su última maniobra un nuevo sistema de desorbitación. El primero de su tipo para evitar escombros a largo plazo en órbita.

 

Dos años y medio después de su lanzamiento en órbita baja polar en abril de 2016, el satélite Microscope está viviendo sus últimas horas. Diseñado para probar el principio de equivalencia con una precisión sin precedentes gracias a dos masas en caída libre, este satélite de CNES completó con éxito la recopilación de datos científicos en febrero de 2018. Desde un punto de vista científico, los equipos dedicados tienen hasta finales de 2019 para publicar sus resultados en base a todos los datos adquiridos. Ya sea que confirmen el principio de equivalencia o detecten una violación de este mismo principio, los resultados finales harán avanzar a los científicos en esta búsqueda.

Pero el satélite ha llegado al final de su vida útil. Está en muy buenas condiciones, pero ya no tiene gas frío para sus micro-hélices, que se utilizan para compensar la resistencia y mantener las masas en caída libre controlada. Ya no es posible adquirir nuevas medidas científicas, por lo que es hora de lidiar con la pasivación.

 

El satélite Microscope no tiene propulsores químicos capaces de proporcionar suficiente energía para desorbitarlo. Después de la secuencia de pasivación, que consiste en hacerlo lo más inactivo posible (no debe quedar ninguna fuente de energía neumática, química o eléctrica), Microscope será considerado como un residuo en órbita, alrededor de la Tierra a 710 km de altitud. Sin embargo, se trata de un pequeño satélite de sólo 330 kg, con poca superficie y, por lo tanto, poca interacción con las pocas partículas atmosféricas capaces de ralentizarlo a esta altitud: se necesitarían 73 años para que finalmente se quemara en la atmósfera de la Tierra.

 

Por eso, MICROSCOPE está equipado con IDEAS (Innovative DEorbiting Aerobrake System), que consiste en dos mástiles inflables de 4,5 m, cada uno de ellos con un "ala" flexible. La superficie de Microscope aumentará en 9 m², lo que generará mucha más fricción con las partículas atmosféricas y el frenado cambiará la órbita paulatinamente con el tiempo. En general, gracias a este sistema, se espera que el satélite se queme en la atmósfera después de unos 27 años. La pasivación se inició ayer 15 de octubre y la secuencia finalizará hoy 16 de octubre.


1798404624_IDEASMicroscope.png.2f4e53abc457746a3630fcab792c9b55.png

 

El sistema IDEAS se monitoreará desde el suelo con la ayuda de un potente radar terrestre, el primer paso será determinar si los dos mástiles se han extendido correctamente: plegado, el sistema mide solo 25 cm de largo, y sus alas están plegadas como un origami. La respuesta definitiva la tenderemos un mes después, cuando detectaremos si el satélite en realidad se está frenando por el sistema IDEAS.

 

Quien desee conocer los objetivos científicos y los primeros resultados publicados de la Misión MICROSCOPE, puede consultar MICROSCOPE: El satélite para comprobar con gran precisión el Principio de Equivalencia

 

Saludos.

Edited by AlbertR
  • Like 6

Share this post


Link to post
Share on other sites
sebastianc

Creo que en radio skylab se había hablado si recuerdo el capítulo lo subo. Buen post amigo.

Share this post


Link to post
Share on other sites
fsr

Ingenioso.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • AlbertR
      By AlbertR
      Vídeo conmemorativo del décimo aniversario del lanzamiento (18/06/2009) del Lunar Reconnaissance Orbiter (LRO😞
       
       
      Y este otro precioso vídeo, que mezcla las imágenes actuales de la Luna tomadas con el LRO con la película real tomada por el propio Apolo XI cincuenta años antes en su alunizaje:
       
       
      Saludos.
       
    • AlbertR
      By AlbertR
      Dentro de 2 años, en junio de 2022, está previsto el lanzamiento del Telescopio Espacial Euclid de la Agencia Europea del Espacio (ESA) mediante un cohete Soyuz-Fregat desde la Kouru en Guayana Francesa. Euclid se ubicará en una órbita de halo en torno al punto de Lagrange L2 Sol-Tierra, que se halla a 1.5 millones de km de la Tierra. La duración de la misión será de 6.25 años y se explorarán 15 mil grados cuadrados de cielo.



      Euclid “A space mission to map the Dark Universe” es la próxima misión de la ESA destinada a estudiar la energía oscura y la materia oscura, los componentes mayoritarios de nuestro Universo.
      Euclid es un satélite grande, de 2200 kg, 4.5 m de longitud y 3.1 m de diámetro. El componente principal es un telescopio cuyo espejo principal es de 1.2 metros de diámetro (como comparación el del Hubble tiene 2.4 metros). Euclid es más pequeño que otros proyectos de telescopios espaciales, pero con sensibilidad hasta magnitud aparente 26.5, de tamaño suficiente para estudiar la energía oscura y la materia oscura. La óptica es de tipo Korsch con tres espejos, para dirigir la luz a los dos instrumentos del telescopio, Visual Imager (VIS) y Near-Infrared Spectrometer and Photometer (NISP)
       
      VIS captará imágenes del cielo (longitud de onda 550-900 nm) de amplio campo de visión (unos 0.8º cuadrados) mediante 36 sensores CCD con una resolución de 0.1 segundos de arco por píxel. Las imágenes permitirán medir la distorsión de las galaxias debido al efecto de lente gravitacional débil para poder determinar la proporción de materia oscura en la línea de visión y medir la influencia de la energía oscura en la expansión del Universo.
       
      NISP es un espectrómetro infrarrojo (900-2000 nm) de 0.7º cuadrados de campo que permitirá analizar la luz de objetos muy lejanos para medir su corrimiento al rojo con alta precisión y determinar su distancia. Ello permitirá estudiar en qué medida la energía oscura está acelerando la expansión del Universo y se espera poder determinar su ecuación de estado.
       
      El 18 de Diciembre de 2018 Euclid anunció que había pasado su revisión crítica de diseño, que verificó que la arquitectura general de la misión y el diseño detallado de todos sus elementos están completos, lo que despejó el camino para comenzar a ensamblar toda la nave espacial.
       
      Ayer el Consorcio Euclid publicó que además del barrido "normal" de 15000º cuadrados de cielo previsto, en particular el satélite estudiará 3 “campos profundos” zonas extremadamente oscuras con el objetivo de encontrar allí objetos débiles y raros. Son 2 zonas en el hemisferio sur y una en el norte marcadas en amarillo en la imagen. La zona marcada en azul es la correspondiente al barrido “normal” que realizará Euclid. Observad que se evitan zonas dominadas por las estrellas del plano de la Vía Láctea y zonas en torno a la eclíptica por el polvo difuso en el Sistema Solar (luz zodiacal), además de evitar la Nube Mayor de Magallanes.
       


      No dejéis de visitar la web de la misión: Euclid Consortium. A space mission to map the Dark Universe
       
      Estaremos atentos, saludos.
    • Dieguito
      By Dieguito
      Hola comunidad, tal vez a mas de uno se le ocurrió pero... hay alguna técnica al alcance del aficionado para medir la curvatura del espacio durante el total? 
      Cómo hizo Eddington?? Corría el año 1919
      Saludos!
      Diego
    • AlbertR
      By AlbertR
      Hola compañeros, os recuerdo a todos que el próximo miércoles, el día 29 de Mayo se cumplirán 100 años del histórico eclipse de Sol del 29/05/1919 en el que la iniciativa liderada por el astrónomo británico Arthur Eddington midió por primera vez la desviación de la luz de estrellas lejanas que pasaba cerca del Sol, y confirmó el valor de desviación que había calculado Einstein en la Relatividad General.
       

       
      A la izquierda la portada del New York Times del 10 de Noviembre de 1919 anunciando que los resultados del análisis de las fotografías del eclipse constituían "el triunfo de Einstein": "Luces doblándose en cielo. Hombres de Ciencia más o menos excitados por los resultados de las observaciones del eclipse. La teoría de Einstein triunfa". A la derecha el dibujo que apareció en Illustrated London News el 22 de noviembre de 1919, que ilustra el resultado de Eddington de la observación del eclipse.
       
      Aquí podéis ver el histórico documento científico, que se publicó en "Philosophical Transactions of the Royal Society A. Mathematical, Physical and Engineering Sciences" el 1 de Enero de 2020, titulado A Determination of the Deflection of Light by the Sun’s Gravitational Field, from Observations Made at the Total Eclipse of May 29, 1919 (Dyson, Eddington, Davidson)
      En el diario La Vanguardia: El eclipse que le dio a Einstein la razón
       
      Saludos.
    • AlbertR
      By AlbertR
      13/05/2019: LightSail 2 se lanzará el mes que viene a bordo del cohete SpaceX Falcon Heavy.
      La nave espacial LightSail 2 de "The Planetary Society" está lista para embarcarse en una misión innovadora para demostrar el poder de la luz solar para la propulsión. Con un peso de tan solo 5 kilogramos, la nave espacial del tamaño de una barra de pan, tipo CubeSat, está programada para despegar el 22 de junio de 2019 a bordo de un cohete SpaceX Falcon Heavy del Kennedy Space Center, Florida. Una vez en el espacio, LightSail 2 desplegará una vela solar del tamaño de un ring de boxeo e intentará elevar su órbita con el suave empuje de los fotones solares.
      Después de unos días de controles de estado, los 4 paneles solares de doble cara de LightSail 2 se abrirán. Aproximadamente un día después, se desplegarán 4 velas Mylar triangulares desde su almacenamiento.
       

       
      Las velas, que tienen un área combinada de 32 metros cuadrados, se orientarán hacia el Sol durante la mitad de cada órbita, lo que dará a la nave un pequeño empuje, no más fuerte que el peso de un clip para papel. Durante aproximadamente un mes después del despliegue de la vela, este impulso continuo debería aumentar la órbita de LightSail 2 en una cantidad mensurable. LightSail 2 orbitará de 720 kilómetros de altura, donde la aceleración de la luz solar supera el arrastre atmosférico.
      Los resultados de la misión LightSail 2 ya están ayudando en el diseño de futuros proyectos de vela solar de otras organizaciones. Por ejemplo en la nave espacial NEA Scout de la NASA que se lanzará hacia la Luna a bordo del primer vuelo del Space Launch System y utilizará una vela solar para visitar un asteroide cercano a la Tierra. The Planetary Society comparte los datos del proyecto LightSail con la NASA a través del Space Act Agreement.
       
      Fuente: LightSail. The Planetary Society
       
       
      Información adicional en castellano: LightSail
       
      Saludos.
  • Opinion de productos

×
×
  • Create New...

Important Information

Términos y condiciones de uso de Espacio Profundo