Jump to content
Astronomia - Espacio Profundo
Conéctate para seguir esto  
AlbertR

Propuesta para cambiarle el nombre a la LEY DE HUBBLE

Publicaciones recomendadas

AlbertR

Hace una semana me informaron de que en la XXX Asamblea General de la Unión Astronómica Internacional UAI, que tuvo lugar entre los días 20 y 31 de agosto de 2018, se ha propuesto renombrar la “Ley de Hubble” como "Ley de Hubble-Lemaître"

La propuesta se ha sometido a voto electrónico de todos los miembros de UAI y el resultado de la votación se dará a conocer el 27/10/2018.

 

En la web de la UAI se puede consultar el documento de motivación de la Propuesta. Lo traduzco y comparto aquí porque me parece que vale la pena leerlo: me ha emocionado, relata un pequeño pedazo de la Historia de la Ciencia y es un ejemplo aleccionador de sensibilidad, buen gusto y reparación histórica, dice así:

 

Apéndice A

Texto final de la Resolución B4 para ser votado electrónicamente por los miembros de la UAI

TRIGÉSIMA ASAMBLEA GENERAL
RESOLUCIONES PRESENTADAS A LA XXX ASAMBLEA GENERAL
RESOLUCIÓN B4

sobre la sugerencia para renombrar la Ley del Hubble

Propuesta por el Comité Ejecutivo de la UAI

La XXX Asamblea General de la Unión Astronómica Internacional,

considerando

1. que el descubrimiento de la aparente recesión de las galaxias, a la que generalmente se hace referencia como la "ley del Hubble", es uno de los principales hitos en el desarrollo de la Ciencia de la Astronomía durante los últimos 100 años y puede considerarse uno de los pilares fundamentales de la Cosmología moderna;

2. que el astrónomo belga Georges Lemaître publicó en 1927 (en francés) el documento titulado "Un Univers homogene de masse constante et de rayon croissant rendant compte de la vitesse radiale des nébuleuses extra-galactiques", (Un Universo homogéneo de masa constante y de radio creciente que refleja la velocidad radial de las nebulosas extragalácticas) En él, primero redescubre la solución dinámica de Friedman a las ecuaciones de la Relatividad General de Einstein que describen un universo en expansión. También demuestra que la expansión del universo implica que los espectros de las galaxias distantes sufrirán un corrimiento al rojo en una cantidad proporcional a su distancia. Finalmente, utiliza datos publicados sobre las velocidades y distancias fotométricas de las galaxias para calcular la velocidad de expansión del universo (asumiendo la relación lineal que él había encontrado sobre las bases teóricas);

3. que, en el momento de la publicación, la escasa popularidad de la revista en la que apareció el artículo de Lemaître y el idioma utilizado, hicieron que su notable descubrimiento pasase ampliamente desapercibido para la comunidad astronómica;

4. que tanto Georges Lemaître (miembro de la UAI desde 1925), como el ingeniero estadounidense Edwin Hubble (miembro de la UAI desde 1922) asistieron ambos a la 3ª Asamblea General de la UAI en Leiden en julio de 1928 e intercambiaron puntos de vista sobre la relevancia de los datos de observaciones del corrimiento hacia el rojo versus distancia de las nebulosas extragalácticas, en relación al emergente modelo evolutivo del universo;

5. que Edwin Hubble, en 1929 publicó el artículo titulado "A Relation between Distance and Radial Velocity among Extra-Galactic Nebulae" (Una relación entre distancia y velocidad radial en nebulosas extragalácticas) en el que proponía y derivaba la relación distancia-velocidad lineal para galaxias, incluyendo finalmente nuevos datos de velocidad en su artículo de 1931 con Humason. Poco después de la publicación de sus documentos, la expansión cósmica empezó a ser universalmente conocida como la "Ley del Hubble";

6. que, en 1931, por invitación de la revista Journal Monthly Notices of the Royal Astronomical Society, G. Lemaître tradujo al inglés su trabajo original de 1927, omitiendo deliberadamente la sección en la que derivaba el ratio de expansión porque "no le pareció aconsejable reimprimir la [su] disertación provisional de las velocidades radiales, que evidentemente ahora ya carecen de interés real, y también la nota geométrica, que podría ser sustituida por una pequeña bibliografía de documentos antiguos y nuevos sobre el tema"

deseando

7. rendir homenaje tanto a Georges Lemaître como a Edwin Hubble por sus contribuciones fundamentales al desarrollo de la Cosmología moderna;

8. honrar la integridad intelectual de Georges Lemaître, que le hizo valorar más el progreso de la Ciencia que su propia visibilidad;

9. destacar el papel de las Asambleas Generales de la UAI en el fomento del intercambio de puntos de vista y de debates internacionales;

10. informar a futuros discursos científicos de hechos históricos;

resuelve

11. recomendar que de ahora en adelante la expansión del universo sea nombrada como la "Ley Hubble-Lemaître".

 

Me siento muy orgulloso de ser aficionado a una Ciencia, la Astronomía, en la cual sus máximos representantes profesionales tiene tiempo y sensibilidad (aunque sea 90 años tarde) para tener en cuenta casos de justicia histórica como éste.

 

El texto original en inglés de la motivación de la propuesta: Appendix A Final text of Resolution B4 to be voted electronically by the IAU Members

El enlace a la página web de la propuesta: Draft resolution to rename the Hubble law as the “Hubble–Lemaître law”

 

Estaremos atentos, saludos.

 

Editado por AlbertR
  • Like 3

Compartir este mensaje


Enlace al mensaje
Compartir en otros sitios web
AlbertR

ATENCIÓN: Se ha realizado la votación electrónica entre todos los miembros de la Unión Astronómica Internacional, y se ha aceptado la resolución de recomendar cambiar el nombre de la ley Hubble como Ley Hubble-Lemaître.

La ley de Hubble-Lemaître describe el efecto por el cual los objetos en un Universo en expansión se alejan entre sí con una velocidad proporcionalmente relacionada con su distancia. Esta resolución fue propuesta para rendir homenaje a Lemaître y a Hubble por sus contribuciones fundamentales al desarrollo de la Cosmología moderna.

 

Fueron invitados a votar 11072 miembros de la UAI con derecho a voto, de ellos han votado un total de 4060 con el resultado de 3167 votos a favor de cambiar el nombre, 812 en contra y 81 votos en blanco.

 

Por lo tanto, por recomendación de la Unión Astronómica Internacional, a partir de ahora se debe nombrar a la ley de expansión del Universo como LEY DE HUBBLE-LEMAÎTRE.

 

Fuente: IUA members vote to recommend renaming the Hubble law as the Hubble-Lemaître Law

 

En la Wikipedia en inglés ya dice "Hubble–Lemaître law (formerly Hubble's law)" = La ley del Hubble-Lemaître (antes ley de Hubble)

 

Saludos.

  • Thanks 1

Compartir este mensaje


Enlace al mensaje
Compartir en otros sitios web

Join the conversation

Puede publicar ahora y registrarse más tarde. Si tiene una cuenta, iniciar sesión para publicar con su cuenta.

Guest
Responder a este tema...

×   Pegar como texto enriquecido.   Restaurar formato

  Only 75 emoji are allowed.

×   Tu enlace se ha incrustado automáticamente..   Mostrar como un enlace en su lugar

×   Se ha restaurado el contenido anterior.   Limpiar editor

×   No se pueden pegar imágenes directamente. Carga o inserta imágenes desde la URL.

Conéctate para seguir esto  

  • Contenido similar

    • AlbertR
      Por AlbertR
      Aunque el Universo está lleno de “pruebas” astronómicas de la existencia de la Materia Oscura: curvas de rotación galáctica, cohesión en los cúmulos galácticos, colisiones de cúmulos de galaxias (como el cúmulo bala), espectro de potencias de las anisotropías del CMB, lentes gravitacionales, oscilaciones acústicas de bariones, … todas estas pruebas son indirectas, se basan en la detección de efectos gravitatorios a gran escala producidos por la materia oscura. Desde hace ya bastantes años se intenta la detección directa de partículas de materia oscura hasta ahora sin éxito.
      En este contexto, leo hoy que FASER (Forward Search Experiment) es un nuevo experimento del Large Hadron Colider (LHC) para la búsqueda de partículas ligeras con interacción débil asociadas a la Materia Oscura aprobado ayer por el CERN. FASER complementará el programa de Física en curso del CERN, extendiendo su potencial de descubrimiento a potenciales nuevas partículas y se espera que sea operativo en 2021.
       
      Este nuevo experimento contribuye a diversificar el programa de Física del colisionador de partículas más grande del mundo (LHC), y permite abordar preguntas sin respuesta en Física de partículas desde una perspectiva diferente, ha explicado en un comunicado Mike Lamont, co-coordinador del grupo de estudio PBC (Physics Beyond Collider), que supervisa FASER.
      Los cuatro detectores principales del LHC no son adecuados para detectar partículas ligeras de interacción débil que podrían producirse paralelamente a la línea del haz. Éstas podrían viajar cientos de metros sin interactuar con ningún material antes de transformarse en partículas conocidas y detectables, como electrones y positrones. Las partículas exóticas, de producirse, escapan a los detectores existentes a lo largo de las líneas del haz de corriente y permanecen sin ser detectadas. Por lo tanto, FASER se ubicará a lo largo de la trayectoria del haz, a 480 metros aguas abajo del punto de interacción situado dentro de ATLAS.
       

       
      Aunque los protones en los haces de partículas del LHC son desviados por imanes y obligados a girar siguiendo el perímetro del LHC, las posibles partículas ligeras que interactúan muy débilmente, continuarían a lo largo de una línea recta y sus "productos de desintegración" podrán ser detectados por FASER. Las potenciales nuevas partículas estarían muy colimadas con el haz, dispersándose muy poco y permitiendo así que un detector relativamente pequeño y barato realice búsquedas altamente sensibles.
      La longitud total del detector es inferior a 5 metros y su estructura cilíndrica central tiene un radio de tan solo 10 centímetros. Se instalará en un túnel lateral a lo largo de una línea de transferencia no utilizada que conecta el LHC con su inyector, el Super Proton Synchrotron. Para que FASER pueda construirse de forma rápida y asequible, se utilizarán piezas de repuesto de los detectores, donadas amablemente por los experimentos ATLAS y LHCb. La colaboración formada por 16 institutos que están construyendo el detector y que llevará a cabo los experimentos, cuenta con el apoyo de la Fundación Heising-Simons y la Fundación Simons.
       
      FASER buscará partículas hipotéticas de interacción débil, incluyendo los llamados "fotones oscuros", partículas que están asociadas con la materia oscura, neutralinos y otros. El experimento se instalará durante la actual parada prolongada 2 (Long Shutdown 2) en curso y comenzará a tomar datos en el LHC’s Run 3 que se ejecutará entre 2021 y 2023. FASER es una propuesta de Física fina que aborda un aspecto particular en la búsqueda de Física más allá del Modelo Estándar.
      Lo he leído en FASER: CERN approves new experiment to look for long-lived, exotic particles
      Y podéis encontrar esquemas, planos, detalles técnicos y amplia documentación en: FASER (ForwArd Search ExpeRiment at the LHC) webpage
       
      Saludos.
       
    • grbengo
      Por grbengo
      PRÓXIMA CHARLA en el CAIFA
      Sábado 1 de diciembre, 18:45hs
       
      "El origen cuántico del Universo"
       
      Les dejo la invitación a una nueva charla, donde hablaremos acerca de cómo pensamos que surgieron las semillas de estructura cósmica en el marco del paradigma inflacionario del modelo del Big Bang.
      Debatiremos también acerca de qué cambios podrían ser necesarios en la mecánica cuántica para resolver algunos problemas abiertos.
      Los esperamos!
       
      Más info en:
      www.caifa.com.ar

    • supernova0
      Por supernova0
      Buenas, voy a empezar a leer en unos dias este libro de lisa randall:
       
      http://quelibroleo.com/web/public/universos-ocultos-un-viaje-a-las-dimensiones-extras-del-cosmos
       
      Lo encontre de casualidad, caminando por corrientes, no sabia que habia libros de ella en español, muy caro me salio, pero bueno, universos ocultos se llama el libro.
      Alguien lo leyo? es muy pesado? 
       
      Es todo sobre cosmologia y branas, y realmente no se si podre entenderlo todo, yo solo soy aficionado de la astronomia, de este universo temporal..
       
      Piensan que ella es una buena cosmologa? 
    • grbengo
      Por grbengo
      Anunciamos el mini-workshop "El Universo como laboratorio cuántico" que estaremos haciendo junto a mi colega, el Dr. Gabriel León (FCAG-UNLP), los días 21 y 22 de noviembre en la Ciudad de Rosario.
      Destinatarios: investigadores, alumnos y docentes de carreras de ciencias exactas y público aficionado a la astronomía con intereses en estos temas.
      La entrada es libre y gratuita.
      Coordinación local: Asociación Amigos del Observatorio y Planetario Municipal de Rosario:
      https://www.facebook.com/amigosdelplanetariorosario/
       

    • AlbertR
      Por AlbertR
      1. INTRODUCCION

      Si la inflación cósmica existió, cuando finalizó, (justo antes del recalentamiento, o sea justo antes de la generación de las partículas elementales que han formado nuestro Universo actual), solo había dos interacciones relevantes en ese momento, la del propio campo inflatón y la gravitacional. Ambas dejaron su huella en la materia que se formó en el recalentamiento, las fluctuaciones cuánticas del inflatón (un campo escalar) generaron anisotropías en la densidad del universo de partículas que aparecieron en el recalentamiento, y las fluctuaciones de la gravedad, (un campo tensorial) ondas gravitacionales primordiales asociadas a estas últimas anisotropías.
      Cuando 380.000 años después del fin de la inflación, los fotones se desacoplaron de la materia y empezaron a volar libres por el universo, (hasta ser detectados actualmente como fondo cósmico de microondas CMB), interaccionaron con esas anisotropías, que les dotaron de cierto grado de polarización.
      Los residuos del campo inflatón (fluctuaciones escalares) produjeron en el CMB polarización en “Modo E” de los fotones, mientras que las fluctuaciones tensoriales de las ondas gravitacionales primordiales, produjeron polarización en “Modo B”
      Buscar esta polarización en el CMB se convirtió por lo tanto en un importante objetivo para comprobar si se cumplen o no las previsiones del modelo inflacionario.
      Imagen
       
      Los modos E fueron detectado por el Degree Angular Scale Interferometer DASI  en 2002 y aunque son concordantes con la Inflación, no son exclusivos de ella.
      Detectar los Modos B primordiales es mucho más difícil, pues son mucho más débiles, pero su detección sí representaría evidencia de la Inflación, pues no existe interpretación alternativa de su existencia que no sean las ondas gravitacionales generadas por la inflación.
      Para complicar el tema, en su camino hasta nosotros los fotones del CMB han sufrido una polarización en Modo B secundaria originada por las microlentes gravitacionales, que hay que “restar” de los modos B primordiales. Estos modos B secundarios fueron detectados en 2013 por el Telescopio del Polo Sur (SPT) (Detection of B-mode Polarization in the Cosmic Microwave Background with Data from the South Pole Telescope)  y confirmados en 2014 por POLARBEAR: A Measurement of the Cosmic Microwave Background B-Mode Polarization Power Spectrum at Sub-Degree Scales with POLARBEAR
       
      A partir de aquí, es conocida la historia de la detección fallida en 2014 de los modos B primordiales por parte de Bicep2  y la búsqueda actual de ellos por Bicep3. Es importante no solo detectar los modos B que probarían la inflación, sino también su magnitud, que se mide por el valor “r” que es el cociente entre la magnitud de B y la magnitud de los modos E. El valor de “r” permitiría discriminar entre diferentes tipos de inflación: los diferentes tipos de inflación se diferencian entre ellos por las diferentes expresiones que puede tener el potencial “V(X)” en función del campo inflatón “X”

      2. LA NOTICIA DEL DIA
       
      De momento ni rastro de los Modos B. Únicamente han conseguido determinar que si existen son muy pequeños. Se acaba de publicar un estudio conjunto de BICEP2/Keck con datos recogidos hasta 2015 (BK15) que concluye que el ratio r = Modos B / Modos E es r < 0.072 al 95% CL que combinado con resultados de Planck (BKP15) da r < 0.062 al 95% CL. Han combinado los datos BK15 de 17 años de observación a 150 GHz, con 4 años a 95 GHz y 2 años a 220 GHz, así como los datos de WMAP9 y Planck 2018 de 23 GHz y 353 GHz.

      El estudio es: BICEP2 / Keck Array x: Constraints on Primordial Gravitational Waves using Planck, WMAP, and New BICEP2/Keck Observations through the 2015 Season
      Ver también información adicional en: Searching for Primordial Gravitational Waves with the BICEP/Keck Telescopes
       
      No hay que perder la esperanza, el observatorio BICEP3 empezó a tomar datos en Junio de 2015, es más sensible que BICEP2 y de momento no ha publicado resultados.
       
      Aunque Francis Villatoro es pesimista y dice
      "...hay pocas esperanzas de que BICEP3 (que toma datos desde 2016 con 2560 detectores a 95 GHz), e incluso el futuro BICEP Array (que se instalará en 2020) logren observar los modos B cosmológicos, ni siquiera con el apoyo de QUIJOTE y otros instrumentos similares. Habrá que esperar al megaproyecto CMB-S4 cuyos resultados llegarán a partir de 2025..." y también "...todo apunta a que habrá que esperar a telescopios espaciales específicos para lograr observar los modos B cosmológicos..."
       
      El post de Francis sobre el tema es: Nuevo límite de exclusión de BICEP2/Keck para las ondas gravitacionales primordiales (r < 0.062 al 95% CL)
       
      La confirmación definitiva de la Inflación Cosmológica tendrá que esperar de momento ... ☹️
       
      Saludos.
       
×
×
  • Crear nuevo...

Información importante

Términos y condiciones de uso de Espacio Profundo