Jump to content
Astronomia - Espacio Profundo
  • Registrate

    Registrate en Espacio Profundo y participa de la comunidad más grande de Astronomía Amateur de habla hispana!

yo gabagaba

Asteroide IRIS

Publicaciones recomendadas

javieriaquinta

Ah, pero buena captura!!!! me encanto el titilar de las estrellas!!!

Grande Fede.

Compartir este mensaje


Enlace al mensaje
Compartir en otros sitios web
marcosarguello3

Wow extraordinaria imagen :) que magnitud alcanzo el asteroide? o.O

Compartir este mensaje


Enlace al mensaje
Compartir en otros sitios web
yo gabagaba

Gracias muchacho por pasar a comentar

La magnitud, según comenta en su artículo Enzo, fue de +9,4 estaba justo en el momento de la oposición, se trata del cuarto objeto más grande del cinturón de asteroides después de ceres y otro más.

Interesante...

F

 

  • Like 1

Compartir este mensaje


Enlace al mensaje
Compartir en otros sitios web
NicoHammer

Espectacular!

  • Like 1

Compartir este mensaje


Enlace al mensaje
Compartir en otros sitios web
RodyG

Muy bueno  !!!!!

  • Thanks 1

Compartir este mensaje


Enlace al mensaje
Compartir en otros sitios web
Leoyasu

Tremendo!!

  • Thanks 1

Compartir este mensaje


Enlace al mensaje
Compartir en otros sitios web
ricardomottini

Tremenda presentación !!!.

muy bueno.

saludos

 

  • Thanks 1

Compartir este mensaje


Enlace al mensaje
Compartir en otros sitios web

Crear una cuenta o conéctate para comentar

Tienes que ser miembro para dejar un comentario

Crear una cuenta

Regístrese para obtener una cuenta nueva en nuestra comunidad. ¡Es fácil!

Registrar una nueva cuenta

Conectar

¿Ya tienes una cuenta? Conéctate aquí.

Conectar ahora

  • Contenido similar

    • AlbertR
      Por AlbertR
      Un artículo recién publicado por científicos de la NASA y de la Administración Nacional de Seguridad Nuclear analiza la mejor manera de evitar el impacto de un asteroide que se dirige hacia la Tierra. La conclusión es que, por encima de cierto tamaño, (de aproximadamente unos 300 metros de diámetro), lo mejor que se puede hacer es lanzarle una bomba, (sí, je, je, como en las películas, 🤣 pero con importantes diferencias) En las películas se detona un arma nuclear en el propio asteroide y éste se rompe en pedazos. Pero eso no parece una buena idea: no se puede estar seguro de lo que sucederá con los trozos. En lugar de un solo gran asteroide que se dirige hacia nosotros, ahora tendríamos cientos de otros ligeramente más pequeños y además radiactivos.

      Lo que realmente parece eficiente es lo que se llama una "detonación de alejamiento". Se hace explotar la bomba a cierta distancia del asteroide (aproximadamente a 50-1000 metros de la superficie). El objetivo no es destruirlo, sino calentarlo, calentarlo muchísimo. Aunque hay un pulso térmico de la bomba sobre el asteroide, esa no es la forma principal de calentamiento eficaz. La bomba genera un enorme pulso de rayos X, rayos Gamma y neutrones de alta energía. Estos penetran la superficie y son absorbidos por el material bajo la superficie creando vapor.

      En el estudio han utilizado modelos informáticos sofisticados que tienen en cuenta todos los factores físicos, para ver qué tan eficiente es el mecanismo explosivo para mover un asteroide amenazante. Como sujeto de prueba, eligieron nuestro viejo conocido Bennu, un conglomerado de escombros rocosos de 500 metros de diámetro que actualmente está siendo examinado por la misión OSIRIS-REx de la NASA. La razón de ésto es que tenemos muchos y buenos datos de él, incluida su forma, densidad, etc., pero también porque a medida que avanza la misión obtendremos datos aún mejores. También porque es una misión de retorno de muestras, por lo que los científicos podrán conocer la composición exacta del material de la superficie, ayudando a mejorar los modelos.
       

      Una simulación de supercomputadora realizada por el físico Mike Owen de LLNL ilustra cómo una detonación nuclear de 1 megatón podría impartir suficiente energía en la superficie del asteroide Bennu para desviarlo de su curso, si estuviera en una trayectoria de colisión con la Tierra. El punto negro es la ubicación de la detonación simulada, a unos 100 metros de la superficie del ecuador. Los colores muestran dónde los rayos X calentarían una capa delgada de material de la superficie. Las áreas azules se calentarían, pero no lo suficiente como para expulsar material. Todas las demás áreas coloreadas depositarían suficiente energía para expulsar el material de la superficie y alterar la velocidad y trayectoria del asteroide.

      La gran cantidad de energía depositada en el asteroide vaporizará mucho material. Esto sucede muy rápido (una fracción de milisegundo) de forma que el material se expande violentamente. Obtendremos una gran cantidad de gas expandiéndose extremadamente rápido ... que es más o menos la descripción de cómo funciona un cohete. Este gas en expansión empuja al asteroide, creando una fuerza que modifica un poco su velocidad, su vector velocidad, no solo el módulo sino también la dirección. Eso es exactamente lo que se desea. Con el tiempo, incluso un pequeño cambio en la velocidad puede hacer que el asteroide “pierda” el objetivo de la Tierra.
       
      La cantidad de desviación depende de muchos factores: la masa del asteroide, su forma y tamaño, el material en la superficie, la porosidad de ese material, su resistencia estructural, el tipo de bomba, el rendimiento explosivo de la bomba, y la distancia de separación de la explosión. De hecho, eso es lo que esta investigación está tratando de descubrir, cómo todos esos factores juegan en la cantidad de desviación. Los modelos han descubierto que la vaporización de la superficie a través de la bomba nuclear funciona bastante bien para un asteroide como Bennu, le produce una desviación de velocidad de aproximadamente 6 cm/s. Eso no es mucho, pero con un tiempo de anticipación de 13 años, eso sería suficiente. Resumiendo, si tenemos tiempo suficiente antes del impacto, una detonación nuclear extrasuperficial es suficiente para desviar al asteroide.

      Hay indicios de que podría ser aún mejor. Aunque no pudieron modelar esto en detalle, notaron que el material vaporizado que se expande rápidamente creará una onda de presión bastante grande, comprimiendo el material sólido debajo de él. Esto irónicamente, es similar a lo que sucede en un impacto de un meteorito en la Tierra. Esa compresión excavará un cráter en la superficie del asteroide, y ese material también será expulsado. Esto agrega un impulso extra, desviando el asteroide aún más. Calculan que para asteroides como Bennu esto podría reducir el tiempo de anticipación necesario a solo 3 ó 4 años. Y eso es una muy buena noticia.

      El estudio también compara la explosión extrasuperficial de una bomba con un impactador cinético, es decir golpear al asteroide tan fuerte como sea posible con un cohete. El impactador cinético también cambia la velocidad y la dirección, pero en el estudio deducen que esto puede funcionar bien hasta un tamaño de asteroide de unos 300 metros, pero si es más grande que eso, una bomba nuclear es más eficiente.
       

      Todavía hay mucha modelación y simulación por hacer, ya que todavía hay mucho que no sabemos sobre los asteroides, pero este trabajo es pionero y esperanzador. El documento científico, (observad que permite descargar gratis el pdf completo) está en: Options and uncertainties in planetary defense: Impulse-dependent response and the physical properties of asteroids

      Información adicional en: Nuclear impulse could deflect massive asteroid y también en Options and uncertainties in planetary defense: Mission planning and vehicle design for flexible response
       
      Saludos.
       
    • AlbertR
      Por AlbertR
      Ya hablamos de la potencia de SPHERE, (Spectro-Polarimetric High-contrast Exoplanet REsearch instrument) instalado en la Unidad 3 del Very Large Telescope (D=8.2 m) en Chile en el hilo AIDA, el proyecto de la ESA y la NASA para estudiar cómo desviar un asteroide para defender la Tierra y en el hilo Primer vídeo de la historia de un exoplaneta orbitando su estrella
       
      Pues bien ahora utilizando el instrumento SPHERE, un equipo de astrónomos de la ESO ha estudiado el asteroide Hygiea, el objeto que es el cuarto más grande del cinturón de asteroides después de Ceres, Vesta y Pallas. Por primera vez, los astrónomos han observado a Hygiea con una resolución lo suficientemente alta como para estudiar su superficie y determinar su forma y tamaño. Descubrieron que Hygiea es esférico, pudiendo pues ser clasificado como "Planeta Enano" y destronar a Ceres como poseedor del título de planeta enano más pequeño del Sistema Solar, (Vesta y Pallas no son esféricos) Esta es la nueva imagen de Hygiea obtenida por SPHERE:
       

       
      A partir de estas recientes observaciones se estima que su diámetro es de unos 434 (+/- 14) km, su masa de 8.32E+19 kg y su densidad de 1944 kg/m3 Se ha conseguido medir también el período de rotación de Hygiea, que es de 13.8 horas, la mitad de lo que se creía previamente.
       
      Recordar que las condiciones para ser considerado planeta enano son: orbita alrededor del Sol, no es una luna y, a diferencia de un planeta, no ha despejado los alrededores de su órbita. El requisito final es que tenga la suficiente masa como para que su propia gravedad genere una forma aproximadamente esférica. Esto último es lo que las observaciones del VLT han revelado ahora sobre Hygiea.
       
      Los astrónomos de la ESO creen que probablemente Hygiea se haya originado en la violenta colisión de dos asteroides más antiguos, ya que no tiene grandes cráteres de impacto:
       
       
      Este es el enlace al paper científico: A basin-free spherical shape as outcome of a giant impact on asteroid Hygiea
       
      Estaremos atentos por si en un futuro próximo, la Unión Astronómica Internacional decide recalificar oficialmente a Hygiea como Planeta Enano.
       
      Saludos.
       
    • jango31
      Por jango31
      buenas amigos. que tipo de telescopio y propiedades recomiendan para fotografiar asteroides y cometas ?
      el año pasado fotografie con una camara el 46p wirtanen, y me quedo gustando.
       
      saludos

    • AlbertR
      Por AlbertR
      El Telescopio Espacial Hubble ha tomado esta espectacular imagen del asteroide 6478 Gault expulsando material polvoriento que ha formado dos colas largas y delgadas similares a las de los cometas. La cola más larga se extiende a más de 800 mil kilómetros y tiene aproximadamente 4800 kilómetros de anchura. La cola más corta tiene aproximadamente una cuarta parte de longitud.
       


      Cada cola representa un episodio en el que el asteroide desprendió parte de su material y evidencia que Gault está comenzando a partirse. Descubierto en 1988, el asteroide de unos 4 kilómetros de diámetro se ha observado repetidamente, pero la aparición de las colas de escombros son la primera evidencia de desintegración. Gault orbita 344 millones de kilómetros del Sol.
       
      Observando las imágenes de las colas podemos ver que los granos de polvo están bien ordenados por tamaño. Todas las partículas grandes (aproximadamente del tamaño de granos de arena) están cerca del objeto y las partículas más pequeñas (aproximadamente del tamaño de los granos de harina) están más lejos porque son empujados más rápido por la presión de la luz solar.
       
      Gault es el segundo asteroide cuya desintegración ha sido fuertemente vinculada al proceso conocido como efecto YORP (Yarkovsky-O'Keefe-Radzievskii-Paddack) Cuando la luz solar calienta un asteroide, la radiación infrarroja que emite su superficie caliente genera impulso angular y calor. Este proceso crea un pequeño par de torsión que puede hacer que el asteroide gire cada vez más rápido. Cuando la fuerza centrífuga resultante comienza a superar a la gravedad, la superficie del asteroide se vuelve inestable, y los desprendimientos de tierra pueden enviar polvo y escombros a la deriva en el espacio a un par de km/h o la velocidad a la que un humano camina. Los investigadores estiman que Gault podría haber estado girando lentamente durante más de 100 millones de años.
       
      La actividad reciente de Gault es una investigación forense astronómica que involucra a telescopios y astrónomos de todo el mundo: La pista inicial fue la detección fortuita de la primera cola de escombros, observada el 5 de enero de 2019, por el telescopio ATLAS de la NASA en Hawai. La cola también apareció en los datos de archivo de diciembre de 2018 del propio ATLAS y de Pan-STARRS ambos en Hawai.
       
      A mediados de enero, el Telescopio Franco Canadiense de Hawai y el Telescopio Isaac Newton en España detectaron la segunda cola más corta. Un análisis de ambas colas sugiere que los dos eventos de polvo ocurrieron uno alrededor del 28 de octubre y el otro alrededor del 30 de diciembre de 2018.

      Las observaciones de seguimiento con el Telescopio William Herschel y el Telescopio OGS, de La Palma y Tenerife, (España) respectivamente, y el Himalayan Chandra Telescope en la India, midieron un período de rotación de dos horas para el asteroide, cerca de la velocidad crítica en la que un asteroide del tipo "montón de escombros" empieza a fracturarse. Gault es la mejor evidencia de un “rotador rápido” justo en el límite de las dos horas. Un análisis del entorno que rodea al asteroide por el Telescopio Hubble, no reveló signos de escombros más uniformemente distribuidos, lo que descarta la posibilidad de que haya sido una colisión con otro asteroide lo que esté causando las emisiones.
       
      Las colas estrechas del asteroide sugieren que el polvo se liberó en ráfagas cortas, que duraron desde unas pocas horas hasta unos pocos días. Las colas comenzarán a desvanecerse en unos pocos meses a medida que el polvo se disperse en el espacio interplanetario.
       
      Los documentos científicos que por ahora se han generado:
       
      The Sporadic Activity of (6478) Gault: A YORP-driven event?
      Dust Properties of Multi-Tailed Active Asteroid (6478) Gault
      Multiple Outbursts of Asteroid (6478) Gault
       
      Saludos.
    • AlbertR
      Por AlbertR
      "En los próximos días, los telescopios más grandes y más potentes de Europa y América del Sur apuntarán a un solo punto en el cielo, reuniendo detalles del asteroide gemelo Didymos - Didymoon para ayudar a guiar el diseño de la misión Hera propuesta por la ESA, dirigida a la pareja Didymos de lanzamiento previsto a finales de 2023.
      En este momento, los asteroides Didymos/Didymoon están en oposición, a unos 145 millones de kilómetros de la Tierra, el asteroide principal de Didymos tiene aproximadamente 780 m de ancho, mientras que el 'Didymoon' más pequeño tiene aproximadamente 160 m de ancho, orbitando a aproximadamente 1 km en 11.9 horas
      La campaña de observación comenzará durante tres noches a partir de hoy 8 de marzo con el Gran Telescopio Canarias de 10,4 m de diámetro, el reflector óptico más grande del mundo, ubicado en el Observatorio del Roque de los Muchachos en la isla de La Palma, en Canarias. España. Las observaciones avanzarán durante las próximas cuatro noches con el telescopio William Herschel de 4.2 m de diámetro, el segundo telescopio óptico más grande de Europa, ubicado en el mismo observatorio.
      En abril, la campaña se trasladará al hemisferio sur, con tres noches de observación desde el Very Large Telescope (un cuarteto interconectado de telescopios de 8,2 m de diámetro) del ESO (Observatorio Europeo del Sur), ubicado en Cerro Paranal, Chile"
      Leído en: World’s best telescopes target asteroids for ESA’s HERA mission
       
       

      Con el objetivo de estudiar cómo se podría desviar un objeto astronómico que viniese a impactar contra la Tierra, la ESA y la NASA han decidido lanzar una sonda contra Didymoon que es el pequeño satélite del asteroide Didymos, para ver si con un impacto consiguen modificar su órbita. El proyecto se llama AIDA, (Asteroid Impact & Deflection Assessment), Misión de Análisis de Impacto y Desvío de un Asteroide y consiste en: 
      En primer lugar, se estudiará el sistema Didymos/Didymoon en detalle con los mayores telescopios del mundo para caracterizar con precisión sus órbitas. En 2021 se lanzará DART, (Double-Asteroid Redirection Test), de la NASA, que llegará allí en 2022 y se estrellará contra Didymoon a unos 6 km/s. Se puede descargar un pdf con los detalles en Double Asteroid Redirection Test (DART) Mission Design and Navigation for Low Energy Escape Junto a DART viajara un pequeño cubesat italiano llamado LICIA (Light Italian CubeSat for Imaging of Asteroid) que observará la eyección del impacto y la formación del cráter en los primeros minutos posteriores al impacto de DART. Finalmente, en Noviembre de 2023 se lanzará HERA de la ESA que llegará a Didymos/Didymoon en Diciembre de 2026. Hera medirá la masa de Didymoon con precisión para poder calcular la eficiencia de la transferencia de impulso en el impacto a partir del cambio medido del período orbital de Didymoon. Hera también estudiará la forma y el volumen de Didymoon, permitiendo el modelado de su estructura interna y la respuesta al impacto. Hera establecerá el nuevo estado dinámico del sistema Didymos/Didymoon con gran detalle, para evaluar la transferencia de energía cinética al sistema en el impacto. Finalmente, Hera modelizará el efecto geofísico del impacto de DART, lo que permitirá extrapolar este experimento único a otros asteroides.                                                                                                                                               
      Información adicional en DART Mission Update (JHU/APL 15 Nov 2018)
       
      Estaremos atentos, saludos.
  • Opinion de productos

×
×
  • Crear nuevo...

Información importante

Términos y condiciones de uso de Espacio Profundo